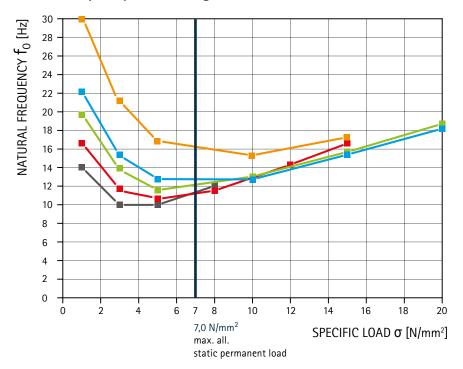


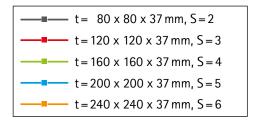
Citrigon® Elastomeric bearing for vibration isolation

Product information

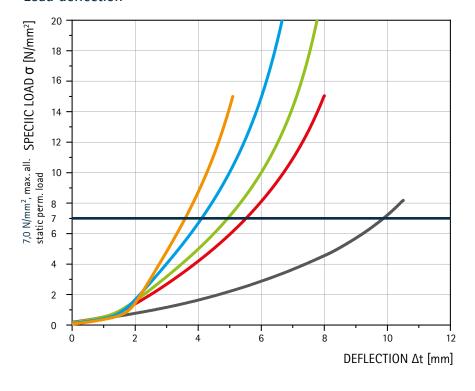
DIMENSIONS AND WEIGHTS		
Available bearing sizes	80 mm x 80 mm 120 mm x 120 mm 160 mm x 160 mm 200 mm x 200 mm 240 mm x 240 mm	
Thickness	37 mm	
Weight	102 kg / m ²	


PROPERTIES		
Materials	NR rubber with reinforcement of weatherproof steel	
Permanent load	≤ 7 N/mm ²	
Permanent load + dynamic load	≤ 12 N/mm ²	
Load peaks (occasional and short-term)	≤ 16 N/mm ²	
Thermal stability	-30°C + 60°C	
Flammability	B2 acc. to DIN 4102 (normally combustible)	
Water absorption	Practically no water absorption	

The elastomeric bearing Citrigon® is used for vibration damping at very high loads. The steel–reinforced bearing is made of a durable elastomer based on natural rubber. The thickness is 37 mm. Depending on the format of the respective bearing, natural frequencies of 10 Hz can be achieved for the system mounted on Citrigon®. The bearing can, also depending on the format, absorb a compression stress of up to 15 N/mm².

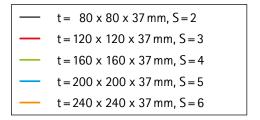

Citrigon® Elastomeric bearing for vibration isolation

Natural frequency at a bearing thickness of 37 mm



NATURAL FREQUENCY CURVE

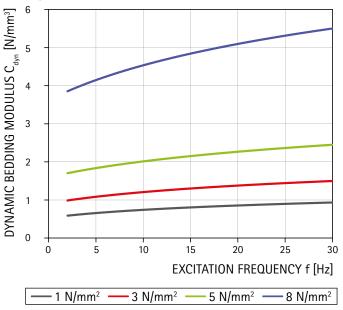
The natural frequency f_0 of an ideal single–mass oscillator mounted on Citrigon® is an essential characteristic for the evaluation of the vibration damping effect. The figure shows the dependence of f_0 on the bearing format using square bearings of 37 mm thickness with two elastomer layers. As an approximation, it can be assumed that f_0 and the deformation are identical for bearings with the same shape factor S and the same number of elastomer layers.



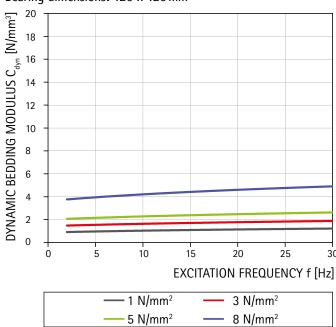
Load deflection

LOAD DEFLECTION CURVE

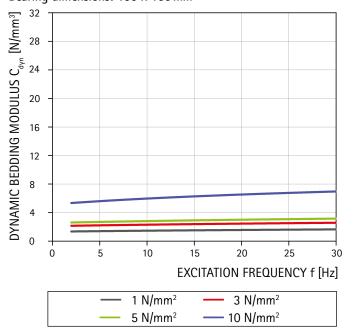
The figure shows the deflection load curves of 37 mm thick Citrigon® bearings with two elastomer layers and square footprint. For bearings with the same form factor and the same number of elastomer layers, the deformation is approximately the same regardless of the form.

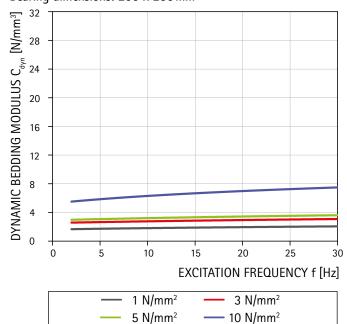


Citrigon® Elastomeric bearing for vibration isolation

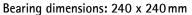

Dynamic bedding modulus

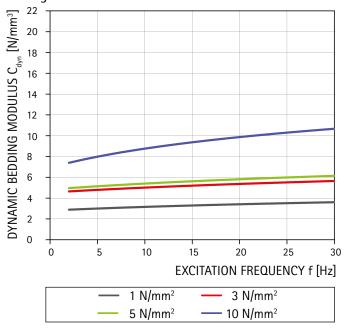
The dynamic bedding modulus C_{dyn} of Citrigon® depends on the excitation frequency f, the vertical compressive stress σ and the bearing dimensions. C_{dyn} is shown in the following orientation diagrams for several bearing formats with 37 mm thickness:


Bearing dimensions: 80 x 80 mm


Bearing dimensions: 120 x 120 mm

Bearing dimensions: 160 x 160 mm


Bearing dimensions: 200 x 200 mm



Citrigon® Elastomeric bearing for vibration isolation

Dynamic bedding modulus

The contents of this publication are the result of many years of research and experience gained in the application of this technology. All information is given in good faith; it does not represent a guarantee with respect to characteristics and does not exempt the user from testing the suitability of products and from ascertaining that the industrial property rights of third parties are not violated. No liability whatsoever will be accepted for damage – regardless of its nature and its legal basis – arising from advice given in this publication. We reserve the right to make technical modifications in the course of product development.